Features

- High-speed, low-power, first-in first-out (FIFO) memories
- 64×18 (CY7C4425)
- 256×18 (CY7C4205)
- 512×18 (CY7C4215)
- 1K x 18 (CY7C4225)
- 2K x 18 (CY7C4235)
- 4K x 18 (CY7C4245)
- High-speed $100-\mathrm{MHz}$ operation (10 ns read/write cycle time)
- Low power ($\mathrm{I}_{\mathrm{CC}}=45 \mathrm{~mA}$)
- Fully asynchronous and simultaneous read and write operation
- Empty, Full, Half Full, and Programmable Almost Empty/Almost Full status flags
- TTL-compatible
- Retransmit function
- Output Enable ($\overline{\mathrm{OE}})$ pin
- Independent read and write enable pins
- Center power and ground for reduced noise
- Supports free-running 50\% duty cycle clock inputs
- Width Expansion Capability
- Depth Expansion Capability
- Space saving 64-pin 10x10 TQFP, and 14×14 TQFP
- 68-pin PLCC

Functional Description

The CY7C42X5 are high-speed, low-power, first-in first-out (FIFO) memories with clocked read and write interfaces. All are 18 bits wide and are pin/functionally compatible to IDT722x5. The CY7C42X5 can be cascaded to increase FIFO depth. Programmable features include Almost Full/Almost Empty flags. These FIFOs provide solutions for a wide variety of data buffering needs, including high-speed data acquisition, multiprocessor interfaces, and communications buffering.
These FIFOs have 18 -bit input and output ports that are controlled by separate clock and enable signals. The input port is
controlled by a free-running clock (WCLK) and a write enable pin (WEN).
When WEN is asserted, data is written into the FIFO on the rising edge of the WCLK signal. While WEN is held active, data is continually written into the FIFO on each cycle. The output port is controlled in a similar manner by a free-running read clock (RCLK) and a read enable pin (REN). In addition, the CY7C42X5 have an output enable pin (OE). The read and write clocks may be tied together for single-clock operation or the two clocks may be run independently for asynchronous read/write applications. Clock frequencies up to 100 MHz are achievable.
Retransmit and Synchronous Almost Full/Almost Empty flag features are available on these devices.
Depth expansion is possible using the cascade input ($\overline{\mathrm{WXI}}$, $\overline{R X I}$), cascade output (WXO, RXO), and First Load (FL) pins. The WXO and $\overline{\mathrm{RXO}}$ pins are connected to the WXI and $\overline{\mathrm{RXI}}$ pins of the next device, and the WXO and RXO pins of the last device should be connected to the WXI and RXI pins of the first device. The FL pin of the first device is tied to $\mathrm{V}_{S S}$ and the FL pin of all the remaining devices should be tied to V_{CC}.
The CY7C42X5 provides five status pins. These pins are decoded to determine one of five states: Empty, Almost Empty, Half Full, Almost Full, and Full (see Table 2). The Half Full flag shares the WXO pin. This flag is valid in the standalone and width-expansion configurations. In the depth expansion, this pin provides the expansion out (WXO) information that is used to signal the next FIFO when it will be activated.
The Empty and Full flags are synchronous, i.e., they change state relative to either the read clock (RCLK) or the write clock (WCLK). When entering or exiting the Empty states, the flag is updated exclusively by the RCLK. The flag denoting Full states is updated exclusively by WCLK. The synchronous flag architecture guarantees that the flags will remain valid from one clock cycle to the next. As mentioned previously, the Almost Empty/Almost Full flags become synchronous if the $\mathrm{V}_{C C} /$ SMODE is tied to $\mathrm{V}_{S S}$. All configurations are fabricated using an advanced $0.65 \mu \mathrm{~N}$-Well CMOS technology. Input ESD protection is greater than 2001 V , and latch-up is prevented by the use of guard rings.

CY7C4425/4205/4215

Logic Block Diagram

Pin Configurations

CYPRESS
Selection Guide

	7C42X5-10	7C42X5-15	7C42X5-25	7C42X5-35
Maximum Frequency (MHz)	100	66.7	40	28.6
Maximum Access Time (ns)	8	10	15	20
Minimum Cycle Time (ns)	10	15	25	35
Minimum Data or Enable Set-Up (ns)	3	4	6	7
Minimum Data or Enable Hold (ns)	0.5	1	1	2
Maximum Flag Delay (ns)	8	10	15	20
Operating Current (ICcz) $(\mathrm{mA}) @$ @req=20MHz	Commercial	45	45	45

	CY7C4425	CY7C4205	CY7C4215	CY7C4225	CY7C4235	CY7C4245
Density	64×18	256×18	512×18	$1 \mathrm{~K} \times 18$	$2 \mathrm{~K} \times 18$	$4 \mathrm{~K} \times 18$
Packages	68 -pin PLCC	$68-$ pin PLCC	$68-$-pin PLCC	$68-$ pin PLCC	$68-$-pin PLCC	$68-$ pin PLCC
	$64-$ pin TQFP	$64-$ pin TQFP	$64-$ pin TQFP	$64-$-pin TQFP	$64-$ pin TQFP	$64-$ pin TQFP
	$(10 \times 10 / 14 \times 14)$					

Pin Definitions

Signal Name	Description	I/O	Function
D_{0-17}	Data Inputs	I	Data inputs for an 18-bit bus
Q_{0-17}	Data Outputs	O	Data outputs for an 18-bit bus
WEN	Write Enable	I	Enables the WCLK input
$\overline{R E N}$	Read Enable	1	Enables the RCLK input
WCLK	Write Clock	1	The rising edge clocks data into the FIFO when $\overline{W E N}$ is LOW and the FIFO is not Full. When LD is asserted, WCLK writes data into the programmable flag-offset register.
RCLK	Read Clock	I	The rising edge clocks data out of the FIFO when $\overline{\text { REN }}$ is LOW and the FIFO is not Empty. When $\overline{\mathrm{LD}}$ is asserted, RCLK reads data out of the programmable flag-offset register.
$\overline{\text { WXO/HF }}$	Write Expansion Out/Half Full Flag	O	Dual-Mode Pin: Single device or width expansion - Half Full status flag. Cascaded - Write Expansion Out signal, connected to WXI of next device.
$\overline{\mathrm{EF}}$	Empty Flag	O	When $\overline{E F}$ is LOW, the FIFO is empty. $\overline{\mathrm{EF}}$ is synchronized to RCLK.
$\overline{\text { FF }}$	Full Flag	O	When $\overline{\mathrm{FF}}$ is LOW, the FIFO is full. $\overline{\mathrm{FF}}$ is synchronized to WCLK.
PAE	Programmable Almost Empty	O	When PAE is LOW, the FIFO is almost empty based on the almost-empty offset value programmed into the FIFO. PAE is asynchronous when $V_{C C} /$ SMODE is tied to V_{CC}; it is synchronized to RCLK when $\mathrm{V}_{\mathrm{CC}} /$ SMODE is tied to V_{SS}.
$\overline{\text { PAF }}$	Programmable Almost Full	O	When $\overline{\text { PAF }}$ is LOW, the FIFO is almost full based on the almost full offset value programmed into the FIFO. $\overline{\text { PAF }}$ is asynchronous when $\mathrm{V}_{\mathrm{CC}} / \overline{\text { SMODE }}$ is tied to V_{CC}; it is synchronized to WCLK when $\mathrm{V}_{\mathrm{CC}} / \overline{\text { SMODE }}$ is tied to V_{SS}.
$\overline{\text { LD }}$	Load	I	When LD is LOW, $D_{0-17}\left(O_{0-17}\right)$ are written (read) into (from) the programma-ble-flag-offset register.
FL/RT	First Load/ Retransmit	I	Dual-Mode Pin: Cascaded - The first device in the daisy chain will have FL tied to V_{SS}; all other devices will have FL tied to V_{CC}. In standard mode of width expansion, $\overline{\mathrm{FL}}$ is tied to $\mathrm{V}_{\text {SS }}$ on all devices. Not Cascaded - Tied to $\mathrm{V}_{\text {SS }}$. Retransmit function is also available in standalone mode by strobing RT.
WXI	Write Expansion Input	I	Cascaded - Connected to WXO of previous device. Not Cascaded - Tied to V_{SS}.

Pin Definitions (continued)

Signal Name	Description	I/O	Function
$\overline{\text { RXI }}$	Read Expansion Input	1	Cascaded - Connected to $\overline{\mathrm{RXO}}$ of previous device. Not Cascaded - Tied to $\mathrm{V}_{\text {Ss }}$.
$\overline{\mathrm{RXO}}$	Read Expansion Output	0	Cascaded - Connected to RXI of next device.
$\overline{\mathrm{RS}}$	Reset	1	Resets device to empty condition. A reset is required before an initial read or write operation after power-up.
$\overline{\mathrm{OE}}$	Output Enable	I	When $\overline{\mathrm{OE}}$ is LOW, the FIFO's data outputs drive the bus to which they are connected. If $\overline{O E}$ is HIGH, the FIFO's outputs are in High Z (high-impedance) state.
$\mathrm{V}_{\text {CC }} /$ SMODE	Synchronous Almost Empty/ Almost Full Flags	I	Dual-Mode Pin Asynchronous Almost Empty/Almost Full flags - tied to V_{CC}. Synchronous Almost Empty/Almost Full flags - tied to $\mathrm{V}_{\text {Ss }}$. (Almost Empty synchronized to RCLK, Almost Full synchronized to WCLK.)

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential \qquad -0.5 V to +7.0 V DC Voltage Applied to Outputs
in High Z State.
-0.5 V to +7.0 V
DC Input Voltage .

Output Current into Outputs (LOW).............................. 20 mA Static Discharge Voltage .. >2001V (per MIL-STD-883, Method 3015) Latch-Up Current .. >200 mA Operating Range

Range	Ambient Temperature	V $_{\text {CC }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial ${ }^{[1]}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameter	Description	Test Conditions		7C42X5-10		7C42X5-15		7C42X5-25		7C42X5-35		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \end{aligned}$		2.4		2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA} \end{aligned}$			0.4		0.4		0.4		0.4	V
$\mathrm{V}_{1 \mathrm{IH}^{[3]}}$	Input HIGH Voltage			2.2	V_{CC}	2.2	V_{CC}	2.2	V_{CC}	2.2	V_{CC}	V
$\mathrm{V}_{\mathrm{IL}}{ }^{[3]}$	Input LOW Voltage			-3.0	0.8	-3.0	0.8	-3.0	0.8	-3.0	0.8	V
I_{IX}	Input Leakage Current	$\mathrm{V}_{\text {CC }}=$ Max.		-10	+10	-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
$\mathrm{IOS}^{[4]}$	Output Short Circuit Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{V}_{\text {OUT }}=\mathrm{GND} \end{aligned}$		-90		-90		-90		-90		mA
$\begin{aligned} & \hline \mathrm{I}_{\mathrm{OZL}} \\ & \mathrm{I}_{\mathrm{OZH}} \end{aligned}$	Output OFF, High Z Current	$\begin{aligned} & \overline{\mathrm{OE}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{~V}_{\mathrm{SS}}<\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CC}} \end{aligned}$		-10	+10	-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
$\mathrm{ICC2}^{[5]}$	Operating Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. }, \\ & \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \end{aligned}$	Com'l		45		45		45		45	mA
			Ind		50		50		50		50	mA
$\mathrm{I}_{\mathrm{SB}}{ }^{[6]}$	Standby Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. }, \\ & \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \end{aligned}$	Com'l		10		10		10		10	mA
			Ind		15		15		15		15	mA

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. The $V_{I H}$ and $V_{I L}$ specifications apply for all inputs except $\overline{W X I}, \overline{R X I}$. The $\overline{W X I}, \overline{R X I}$ pin is not a TTL input. It is connected to either $\overline{R X O}$, $\overline{W X O}$ of the previous device or $V_{S S}$.
4. Test no more than one output at a time for not more than one second.
5. Input signals switch from OV to 3 V with a rise/fall time less than 3 ns , clocks and clock enables switch at 20 MHz , while the data inputs switch at 10 MHz . Outputs are unloaded.
6. All input signals are connected to V_{CC}. All outputs are unloaded.

Capacitance ${ }^{[7]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	5	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	7	pF

AC Test Loads and Waveforms ${ }^{[8, ~ 9]}$

42X5-5

Equivalent to:

THÉVENIN	EQUIVALENT
OUTPUTa	410Ω

Notes:

7. Tested initially and after any design or process changes that may affect these parameters.
8. $C_{L}=30 \mathrm{pF}$ for all $A C$ parameters except for tohz.
9. $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ for $\mathrm{t}_{\mathrm{OHz}}$.

Switching Characteristics Over the Operating Range

Parameter	Description	7C42X5-10		7C42X5-15		7C42X5-25		7C42X5-35		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t_{s}	Clock Cycle Frequency		100		66.7		40		28.6	MHz
t_{A}	Data Access Time	2	8	2	10	2	15	2	20	ns
$\mathrm{t}_{\text {CLK }}$	Clock Cycle Time	10		15		25		35		ns
$\mathrm{t}_{\text {CLKH }}$	Clock HIGH Time	4.5		6		10		14		ns
$\mathrm{t}_{\text {CLKL }}$	Clock LOW Time	4.5		6		10		14		ns
t_{DS}	Data Set-Up Time	3		4		6		7		ns
t_{DH}	Data Hold Time	0.5		1		1		2		ns
$\mathrm{t}_{\text {ENS }}$	Enable Set-Up Time	3		4		6		7		ns
$\mathrm{t}_{\text {ENH }}$	Enable Hold Time	0.5		1		1		2		ns
t_{RS}	Reset Pulse Width ${ }^{[10]}$	10		15		25		35		ns
$\mathrm{t}_{\mathrm{RSR}}$	Reset Recovery Time	8		10		15		20		ns
$\mathrm{t}_{\text {RSF }}$	Reset to Flag and Output Time		10		15		25		35	ns
$\mathrm{t}_{\text {PRT }}$	Retransmit Pulse Width	12		15		25		35		ns
$t_{\text {RTR }}$	Retransmit Recovery Time	12		15		25		35		ns
tolz	Output Enable to Output in Low $\mathrm{Z}^{[17]}$	0		0		0		0		ns
toe	Output Enable to Output Valid	3	7	3	8	3	12	3	15	ns
torz	Output Enable to Output in High Z ${ }^{[12]}$	3	7	3	8	3	12	3	15	ns
$\mathrm{t}_{\text {WFF }}$	Write Clock to Full Flag		8		10		15		20	ns
$\mathrm{t}_{\text {REF }}$	Read Clock to Empty Flag		8		10		15		20	ns
$t_{\text {PAFasynch }}$	Clock to Programmable Almost-Full Flag ${ }^{[12]}$ (Asynchronous mode, $\mathrm{V}_{\mathrm{CC}} / \longdiv { \text { SMODE } }$ tied to V_{CC})		12		16		20		25	ns

Switching Characteristics Over the Operating Range (continued)

Parameter	Description	7C42X5-10		7C42X5-15		7C42X5-25		7C42X5-35		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {PAFsynch }}$	Clock to Programmable Almost-Full Flag (Synchronous mode, $\mathrm{V}_{\mathrm{CC}} /$ SMODE tied to V_{SS})		8		10		15		20	ns
teaEasynch	Clock to Programmable Almost-Empty Flag ${ }^{[12]}$ (Asynchronous mode, $\mathrm{V}_{\mathrm{CC}} /$ SMODE tied to V_{CC})		12		16		20		25	ns
$\mathrm{t}_{\text {PAEsynch }}$	Clock to Programmable Almost-Full Flag (Synchronous mode, V_{CC} SMODE tied to V_{SS})		8		10		15		20	ns
t_{HF}	Clock to Half-Full Flag		12		16		20		25	ns
t_{XO}	Clock to Expansion Out		7		10		15		20	ns
t_{XI}	Expansion in Pulse Width	3		6.5		10		14		ns
$\mathrm{t}_{\text {XIS }}$	Expansion in Set-Up Time	4.5		5		10		15		ns
$\mathrm{t}_{\text {SKEW1 }}$	Skew Time between Read Clock and Write Clock for Full Flag	5		6		10		12		ns
$\mathrm{t}_{\text {SKEW2 }}$	Skew Time between Read Clock and Write Clock for Empty Flag	5		6		10		12		ns
$\mathrm{t}_{\text {SKEW3 }}$	Skew Time between Read Clock and Write Clock for Programmable Almost Empty and Programmable Almost Full Flags.	10		15		18		20		ns

Switching Waveforms

Write Cycle Timing

REN

Notes:

10. Pulse widths less than minimum values are not allowed.
11. Values guaranteed by design, not currently tested.
12. PAFasynch, $t_{\text {PAEasynch, }}$ after program register write will not be valid until $5 \mathrm{~ns}+\mathrm{t}_{\text {PAF(E) }}$.
13. $\mathrm{I}_{\mathrm{SKEW}} 1$ IS the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that FF will go HIGH during the current clock cycle. If the time between the rising edge of RCLK and the rising edge of WCLK is less than SKEW $^{\prime}$, then $\overline{F F}$ may not change state until the next WCLK edge.

Switching Waveforms (continued)
Read Cycle Timing

Reset Timing ${ }^{[15]}$

Notes:

14. .tSKEW2 is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that $\overline{E F}$ will go HIGH during the current clock cycle. It the time between the rising edge of WCLK and the rising edge of RCLK is less than $t_{\text {SKEW2 }}$, then EF may not change state until the next RCLK edge.
15. The clocks (RCLK, WCLK) can be free-running during reset.
16. After reset, the outputs will be LOW if $\mathrm{OE}=0$ and three-state if $\overline{\mathrm{OE}}=1$.

Switching Waveforms (continued)
First Data Word Latency after Reset with Simultaneous Read and Write

Notes:
 The Latency Timing applies only at the Empty Boundary ($\mathrm{EF}=\mathrm{LOW}$).
18. The first word is available the cycle after EF goes HIGH, always.

Switching Waveforms (continued)
Full Flag Timing

Half-Full Flag Timing

Switching Waveforms (continued)
Programmable Almost Empty Flag Timing

Programmable Almost Empty Flag Timing (applies only in SMODE (SMODE is LOW)

42X5-14

[^0]Switching Waveforms (continued)

Programmable Almost Full Flag Timing

Programmable Almost Full Flag Timing (applies only in SMODE (SMODE in LOW))

42X5-16

Notes:

23. PAF offset $=m$. Number of data words written into FIFO already $=64-m+1$ for the CY7C4425, $256-m+1$ for the CY7C4205, $512-m+1$ for the CY7C4215. $1024-m+1$ for the CY7C4225, $2048-m+1$ for the CY7C4235, and $4096-m+1$ for the CY7C4245.
24. PAF is offset $=\mathrm{m}$.
25. 64 - m words in CY7C4425, 256 - m words inCY7C4205, 512 - m word in CY7C4215. 1024 - m words in CY7C4225, 2048 - m words in CY7C4235, and 4096 - m words in CY7C4245.
26. $64-m+1$ words in CY7C4425, $256-m+1$ words in CY7C4205, $512-m+1$ words in CY7C4215, $1024-m+1$ CY7C4225, 2048 $-m+1$ in CY74235, and $4096-m+1$ words in CY7C4245.
27. If a write is performed on this rising edge of the write clock, there will be Full - $(m-1)$ words of the FIFO when PAF goes LOW.
28. PAF offset $=m$
29. 64 - m words in CY7C4425, 256 - m words in FIFO for CY7C4205, 512 - m word in CY7C4215. 1024 - m words in CY7C4225, 2048 - m words in CY7C4235, and 4096 - m words in CY7C4245.
30. $\mathrm{t}_{\text {SKEW }}$ is the minimum time between a rising RCLK and a rising WCLK edge for $\overline{P A F}$ to change state during that clock cycle. If the time between the edge of RCLK and the rising edge of WCLK is less than $\mathrm{t}_{\text {SKEW }}$, then PAF may not change state until the next WCLK rising edge.

Switching Waveforms (continued)

Write Programmable Registers

Read Programmable Registers

Write Expansion Out Timing

Note:

31. Write to Last Physical Location.

Switching Waveforms (continued)
Read Expansion Out Timing

Write Expansion In Timing

Read Expansion In Timing

Retransmit Timing ${ }^{[33,34,35]}$

Notes:

32. Read from Last Physical Location.
33. Clocks are free running in this case
34. The flags may change state during Retransmit as a result of the offset of the read and write pointers, but flags will be valid at trTR.
35. For the synchronous PAE and PAF flags (SMODE), an appropriate clock cycle is necessary after $\mathrm{t}_{\text {RTR }}$ to update these flags.

Architecture

The CY7C42X5 consists of an array of 64 to 4 K words of 18 bits each (implemented by a dual-port array of SRAM cells), a read pointer, a write pointer, control signals (RCLK, WCLK, $\overline{R E N}, \overline{W E N}, \overline{R S}$), and flags ($\overline{\mathrm{EF}}, \overline{\mathrm{PAE}}, \overline{\mathrm{HF}}, \overline{\mathrm{PAF}}, \overline{\mathrm{FF}}$). The CY7C42X5 also includes the control signals $\overline{\mathrm{WXI}}, \overline{\mathrm{RXI}}, \overline{\mathrm{WXO}}$, RXO for depth expansion.

Resetting the FIFO

Upon power-up, the FIFO must be reset with a Reset ($\overline{\mathrm{RS}}$) cycle. This causes the FIFO to enter the Empty condition signified by EF being LOW. All data outputs go LOW after the falling edge of $\overline{\mathrm{RS}}$ only if $\overline{\mathrm{OE}}$ is asserted. In order for the FIFO to reset to its default state, a falling edge must occur on RS and the user must not read or write while $\overline{\mathrm{RS}}$ is LOW.

FIFO Operation

When the WEN signal is active (LOW), data present on the D_{0-17} pins is written into the FIFO on each rising edge of the WCLK signal. Similarly, when the REN signal is active LOW, data in the FIFO memory will be presented on the Q_{0-17} outputs. New data will be presented on each rising edge of RCLK while $\overline{R E N}$ is active LOW and $\overline{O E}$ is LOW. $\overline{R E N}$ must set up tENS before RCLK for it to be a valid read function. WEN must occur tENS before WCLK for it to be a valid write function.
An output enable ($\overline{\mathrm{OE}}$) pin is provided to three-state the Q_{0-17} outputs when OE is deasserted. When OE is enabled (LOW), data in the output register will be available to the Q_{0-17} outputs after t_{OE}. If devices are cascaded, the OE function will only output data on the FIFO that is read enabled.
The FIFO contains overflow circuitry to disallow additional writes when the FIFO is full, and underflow circuitry to disallow additional reads when the FIFO is empty. An empty FIFO maintains the data of the last valid read on its Q_{0-17} outputs even after additional reads occur.

Programming

The CY7C42X5 devices contain two 12-bit offset registers. Data present on D_{0-11} during a program write will determine the distance from Empty (Full) that the Almost Empty (Almost Full) flags become active. If the user elects not to program the FIFO's flags, the default offset values are used (see Table 2). When the Load $\overline{\text { LD }}$ pin is set LOW and $\overline{W E N}$ is set LOW, data on the inputs D_{0-11} is written into the Empty offset register on the first LOW-to-HIGH transition of the write clock (WCLK). When the $\overline{L D}$ pin and $\overline{W E N}$ are held LOW then data is written into the Full offset register on the second LOW-to-HIGH transition of the write clock (WCLK). The third transition of the write clock (WCLK) again writes to the Empty offset register (see Table 1). Writing all offset registers does not have to occur at one time. One or two offset registers can be written and then, by bringing the LD pin HIGH, the FIFO is returned to normal read/write operation. When the LD pin is set LOW, and WEN is LOW, the next offset register in sequence is written.
The contents of the offset registers can be read on the output lines when the $\overline{\mathrm{LD}}$ pin is set LOW and $\overline{\mathrm{REN}}$ is set LOW; then, data can be read on the LOW-to-HIGH transition of the read clock (RCLK).

Table 1. Write Offset Register

$\overline{\text { LD }}$	WEN	WCLK $^{[36]}$	Selection
0	0		Writing to offset registers: Empty Offset Full Offset
0	1		No Operation
1	0		Write Into FIFO
1	1		No Operation

Note:
36.
The same selection sequence applies to reading from the registers. REN
is enabled and read is performed on the LOW-to-HHGH transition of RCLK.

Flag Operation

The CY7C42X5 devices provide five flag pins to indicate the condition of the FIFO contents. Empty and Full are synchronous. PAE and PAF are synchronous if V_{CC} /SMODE is tied to Vs.

Full Flag

The Full Flag ($\overline{\mathrm{FF}}$) will go LOW when device is Full. Write operations are inhibited whenever $\overline{\mathrm{FF}}$ is LOW regardless of the state of $\overline{W E N} . \overline{\mathrm{FF}}$ is synchronized to WCLK, i.e., it is exclusively updated by each rising edge of WCLK.

Empty Flag

The Empty Flag (EF) will go LOW when the device is empty. Read operations are inhibited whenever EF is LOW, regardless of the state of $\overline{R E N}$. $\overline{E F}$ is synchronized to RCLK, i.e., it is exclusively updated by each rising edge of RCLK.

Programmable Almost Empty/Almost Full Flag

The CY7C42X5 features programmable Almost Empty and AImost Full Flags. Each flag can be programmed (described in the Programming section) a specific distance from the corresponding boundary flags (Empty or Full). When the FIFO contains the number of words or fewer for which the flags have been programmed, the PAF or PAE will be asserted, signifying that the FIFO is either Almost Full or Almost Empty. See Table 2 for a description of programmable flags.
When the SMODE pin is tied LOW, the PAF flag signal transition is caused by the rising edge of the write clock and the PAE flag transition is caused by the rising edge of the read clock.

Retransmit

The retransmit feature is beneficial when transferring packets of data. It enables the receipt of data to be acknowledged by the receiver and retransmitted if necessary.
The Retransmit (RT) input is active in the standalone and width expansion modes. The retransmit feature is intended for use when a number of writes equal to or less than the depth of the FIFO have occurred since the last RS cycle. A HIGH pulse on RT resets the internal read pointer to the first physical location of the FIFO. WCLK and RCLK may be free running but must be disabled during and trTR after the retransmit pulse. With

CY7C4425/4205/4215 CY7C4225/4235/4245
every valid read cycle after retransmit, previously accessed data is read and the read pointer is incremented until it is equal to the write pointer. Flags are governed by the relative locations of the read and write pointers and are updated during a
retransmit cycle. Data written to the FIFO after activation of RT are transmitted also.
The full depth of the FIFO can be repeatedly retransmitted.

Table 2. Flag Truth Table.

Number of Words in FIFO			FF	PAF	HF	PAE	EF
7C4425-64 x 18	7C4205-256 x 18	7C4215-512 x 18					
0	0	0	H	H	H	L	L
1 to $\mathrm{n}^{[37}$	1 to $\mathrm{n}^{[37]}$	1 to $\mathrm{n}^{[37]}$	H	H	H	L	H
$(\mathrm{n}+1)$ to 32	$(\mathrm{n}+1)$ to 128	$(\mathrm{n}+1)$ to 256	H	H	H	H	H
33 to (64-(m+1))	129 to (256-(m+1))	257 to (512-(m+1))	H	H	L	H	H
$(64-m)^{[38]}$ to 63	$(256-\mathrm{m})^{[38]}$ to 255	$(512-\mathrm{m})^{[38]}$ to 511	H	L	L	H	H
64	256	512	L	L	L	H	H

Number of Words in FIFO			FF	PAF	HF	PAE	EF
7C4225-1K x 18	7C4235-2K x 18	7C4245-4K x 18					
0	0	0	H	H	H	L	L
1 to $\mathrm{n}^{[37]}$	1 to $\mathrm{n}^{[37]}$	1 to $\mathrm{n}^{[37]}$	H	H	H	L	H
$(\mathrm{n}+1)$ to 512	$(\mathrm{n}+1)$ to 1024	($\mathrm{n}+1$) to 2048	H	H	H	H	H
513 to (1024-(m+1))	1025 to (2048-(m+1))	2049 to (4096-(m+1))	H	H	L	H	H
$(1024-m)^{[38]}$ to 1023	$(2048-\mathrm{m})^{[38]}$ to 2047	$(4096-\mathrm{m})^{[38]}$ to 4095	H	L	L	H	H
1024	2048	4096	L	L	L	H	H

Notes:
37. $n=$ Empty Offset (Default Values: CY7C4425 $n=7$, CY7C4205 $n=31$, CY7C4215 $n=63$, CY7C4225/7C4235/7C4245 $n=127$).
38. $m=$ Fuil Offset (Default Values: CY7C4425 $n=7$, CY7C4205 $n=31$, CY7C4215 $n=63$, CY7C4225/7C4235/7C4245 $n=127$).

Width Expansion Configuration

The CY7C42X5 can be expanded in width to provide word widths greater than 18 in increments of 18. During width expansion mode all control line inputs are common and all flags
are available. Empty (Full) flags should be created by ANDing the Empty (Full) flags of every FIFO. This technique will avoid ready data from the FIFO that is "staggered" by one clock cycle due to the variations in skew between RCLK and WCLK. Figure 1 demonstrates a 36-word width by using two CY7C42X5.

Figure 1. Block Diagram of $64 \times 36 / 256 \times 36 / 512 \times 36 / 1024 \times 36 / 2048 \times 36 / 4096 \times 36$ Synchronous FIFO Memory Used in a Width Expansion Configuration.

Depth Expansion Configuration (with Programmable Flags)

The CY7C42X5 can easily be adapted to applications requiring more than 64/256/512/1024/2048/4096 words of buffering. Figure 2 shows Depth Expansion using three CY7C42X5s. Maximum depth is limited only by signal loading. Follow these steps:

1. The first device must be designated by grounding the First Load (FL) control input.
2. All other devices must have FL in the HIGH state.
3. The Write Expansion Out (WXO) pin of each device must be tied to the Write Expansion In (WXI) pin of the next device.
4. The Read Expansion Out ($\overline{\mathrm{RXO})}$) pin of each device must be tied to the Read Expansion In (RXI) pin of the next device.
5. All Load ($\overline{\mathrm{LD}}$) pins are tied together.
6. The Half-Full Flag ($\overline{\mathrm{FF}}$) is not available in the Depth Expansion Configuration.
7. $\overline{\mathrm{EF}}, \overline{\mathrm{FF}}, \overline{\mathrm{PAE}}$, and $\overline{\mathrm{PAF}}$ are created with composite flags by ORing together these respective flags for monitoring. The composite PAE and PAF flags are not precise.

Figure 2. Block Diagram of $192 \times 18 / 768 \times 18 / 1536 \times 18 / 3072 \times 18 / 12288 \times 18$ Synchronous FIFO Memory with Programmable Flags used in Depth Expansion Configuration.

Typical AC and DC Characteristics

Ordering Information

64×18 Synchronous FIFO

$\begin{aligned} & \text { Speed } \\ & \text { (ns) } \end{aligned}$	Ordering Code	Package Name	Package Type	Operating Range
10	CY7C4425-10AC	A65	64-Lead 14x14 Thin Quad Flatpack	Commercial
	CY7C4425-10ASC	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4425-10JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7C4425-10AI	A65	64-Lead 14×14 Thin Quad Flatpack	Industrial
	CY7C4425-10ASI	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4425-10JI	J81	68-Lead Plastic Leaded Chip Carrier	
15	CY7C4425-15AC	A65	64-Lead 14×14 Thin Quad Flatpack	Commercial
	CY7C4425-15ASC	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4425-15JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7C4425-15AI	A65	64-Lead 14x14 Thin Quad Flatpack	Industrial
	CY7C4425-15ASI	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4425-15JI	J81	68-Lead Plastic Leaded Chip Carrier	
25	CY7C4425-25AC	A65	64-Lead 14×14 Thin Quad Flatpack	Commercial
	CY7C4425-25ASC	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4425-25JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7C4425-25AI	A65	64-Lead 14x14 Thin Quad Flatpack	Industrial
	CY7C4425-25ASI	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4425-25JI	J81	68-Lead Plastic Leaded Chip Carrier	
35	CY7C4425-35AC	A65	64-Lead 14x14 Thin Quad Flatpack	Commercial
	CY7C4425-35ASC	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4425-35JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7C4425-35AI	A65	64-Lead 14x14 Thin Quad Flatpack	Industrial
	CY7C4425-35ASI	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4425-35JI	J81	68-Lead Plastic Leaded Chip Carrier	

CYPRESS
256×18 Synchronous FIFO

$\begin{gathered} \text { Speed } \\ \text { (ns) } \end{gathered}$	Ordering Code	Package Name	Package Type	Operating Range
10	CY7C4205-10AC	A65	64-Lead 14x14 Thin Quad Flatpack	Commercial
	CY7C4205-10ASC	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4205-10JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7C4205-10AI	A65	64-Lead 14x14 Thin Quad Flatpack	Industrial
	CY7C4205-10ASI	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4205-10JI	J81	68-Lead Plastic Leaded Chip Carrier	
15	CY7C4205-15AC	A65	64-Lead 14x14 Thin Quad Flatpack	Commercial
	CY7C4205-15ASC	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4205-15JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7C4205-15AI	A65	64-Lead 14x14 Thin Quad Flatpack	Industrial
	CY7C4205-15ASI	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4205-15JI	J81	68-Lead Plastic Leaded Chip Carrier	
25	CY7C4205-25AC	A65	64-Lead 14x14 Thin Quad Flatpack	Commercial
	CY7C4205-25ASC	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4205-25JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7C4205-25AI	A65	64-Lead 14x14 Thin Quad Flatpack	Industrial
	CY7C4205-25ASI	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4205-25JI	J81	68-Lead Plastic Leaded Chip Carrier	
35	CY7C4205-35AC	A65	64-Lead 14x14 Thin Quad Flatpack	Commercial
	CY7C4205-35ASC	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4205-35JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7C4205-35AI	A65	64-Lead 14×14 Thin Quad Flatpack	Industrial
	CY7C4205-35ASI	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4205-35JI	J81	68-Lead Plastic Leaded Chip Carrier	

512×18 Synchronous FIFO

$\begin{gathered} \text { Speed } \\ \text { (ns) } \end{gathered}$	Ordering Code	Package Name	Package Type	Operating Range
10	CY7C4215-10AC	A65	64-Lead 14x14 Thin Quad Flatpack	Commercial
	CY7C4215-10ASC	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4215-10JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7C4215-10AI	A65	64-Lead 14×14 Thin Quad Flatpack	Industrial
	CY7C4215-10ASI	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4215-10JI	J81	68-Lead Plastic Leaded Chip Carrier	
15	CY7C4215-15AC	A65	64-Lead 14x14 Thin Quad Flatpack	Commercial
	CY7C4215-15ASC	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4215-15JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7C4215-15AI	A65	64-Lead 14x14 Thin Quad Flatpack	Industrial
	CY7C4215-15ASI	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4215-15JI	J81	68-Lead Plastic Leaded Chip Carrier	
25	CY7C4215-25AC	A65	64-Lead 14x14 Thin Quad Flatpack	Commercial
	CY7C4215-25ASC	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4215-25JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7C4215-25AI	A65	64-Lead 14x14 Thin Quad Flatpack	Industrial
	CY7C4215-25ASI	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4215-25JI	J81	68-Lead Plastic Leaded Chip Carrier	
35	CY7C4215-35AC	A65	64-Lead 14x14 Thin Quad Flatpack	Commercial
	CY7C4215-35ASC	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4215-35JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7C4215-35AI	A65	64-Lead 14x14 Thin Quad Flatpack	Industrial
	CY7C4215-35ASI	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4215-35JI	J81	68-Lead Plastic Leaded Chip Carrier	

CYPRESS

1K x 18 Synchronous FIFO

| Speed
 (ns) | Ordering Code | Package
 Name | Package
 Type | |
| :---: | :--- | :---: | :--- | :--- | :--- |
| 10 | CY7C4225-10AC | A65 | 64-Lead 14x14 Thin Quad Flatpack | Commercial |
| | CY7C4225-10ASC | A64 | 64-Lead 10x10 Thin Quad Flatpack | |

CYPRESS

2K x 18 Synchronous FIFO

$\begin{gathered} \text { Speed } \\ \text { (ns) } \end{gathered}$	Ordering Code	Package Name	Package Type	Operating Range
10	CY7C4235-10AC	A65	64-Lead 14x14 Thin Quad Flatpack	Commercial
	CY7C4235-10ASC	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4235-10JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7C4235-10AI	A65	64-Lead 14x14 Thin Quad Flatpack	Industrial
	CY7C4235-10ASI	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4235-10JI	J81	68-Lead Plastic Leaded Chip Carrier	
15	CY7C4235-15AC	A65	64-Lead 14x14 Thin Quad Flatpack	Commercial
	CY7C4235-15ASC	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4235-15JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7C4235-15AI	A65	64-Lead 14x14 Thin Quad Flatpack	Industrial
	CY7C4235-15ASI	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4235-15JI	J81	68-Lead Plastic Leaded Chip Carrier	
25	CY7C4235-25AC	A65	64-Lead 14x14 Thin Quad Flatpack	Commercial
	CY7C4235-25ASC	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4235-25JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7C4235-25AI	A65	64-Lead 14x14 Thin Quad Flatpack	Industrial
	CY7C4235-25ASI	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4235-25JI	J81	68-Lead Plastic Leaded Chip Carrier	
35	CY7C4235-35AC	A65	64-Lead 14x14 Thin Quad Flatpack	Commercial
	CY7C4235-35ASC	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4235-35JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7C4235-35AI	A65	64-Lead 14x14 Thin Quad Flatpack	Industrial
	CY7C4235-35ASI	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4235-35JI	J81	68-Lead Plastic Leaded Chip Carrier	

CYPRESS

4K x 18 Synchronous FIFO

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
10	CY7C4245-10AC	A65	64-Lead 14x14 Thin Quad Flatpack	Commercial
	CY7C4245-10ASC	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4245-10JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7C4245-10AI	A65	64-Lead 14x14 Thin Quad Flatpack	Industrial
	CY7C4245-10ASI	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4245-10JI	J81	68-Lead Plastic Leaded Chip Carrier	
15	CY7C4245-15AC	A65	64-Lead 14x14 Thin Quad Flatpack	Commercial
	CY7C4245-15ASC	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4245-15JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7C4245-15AI	A65	64-Lead 14x14 Thin Quad Flatpack	Industrial
	CY7C4245-15ASI	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4245-15JI	J81	68-Lead Plastic Leaded Chip Carrier	
25	CY7C4245-25AC	A65	64-Lead 14x14 Thin Quad Flatpack	Commercial
	CY7C4245-25ASC	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4245-25JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7C4245-25AI	A65	64-Lead 14x14 Thin Quad Flatpack	Industrial
	CY7C4245-25ASI	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4245-25JI	J81	68-Lead Plastic Leaded Chip Carrier	
35	CY7C4245-35AC	A65	64-Lead 14x14 Thin Quad Flatpack	Commercial
	CY7C4245-35ASC	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4245-35JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7C4245-35AI	A65	64-Lead 14x14 Thin Quad Flatpack	Industrial
	CY7C4245-35ASI	A64	64-Lead 10x10 Thin Quad Flatpack	
	CY7C4245-35JI	J81	68-Lead Plastic Leaded Chip Carrier	

Package Diagrams

64-Lead Thin Plastic Quad Flat Pack A65

64-Pin Thin Quad Flat Pack A64

Package Diagrams (continued)

68-Lead Plastic Leaded Chip Carrier J81

[^0]: Notes:
 19. PAE offset $-n$. Number of data words into FIFO already $=n$.
 20. PAE offset $-n$.
 21. $\mathrm{t}_{\text {SKEW }}$ is the minimum time between a rising WCLK and a rising RCLK edge for PAE to change state during that clock cycle. If the time between the edge of WCLK and the rising RCLK is less than tSKEW3, then PAE may not change state until the next RCLK.
 22. If a read is performed on this rising edge of the read clock, there will be Empty $+(n-1)$ words in the FIFO when PAE goes LOW.

